

Program Specific Outcomes

Microbiology is a branch of science that studies "Life" taking an example of microorganisms such as bacteria, protozoa, algae, fungi, bacteria, viruses, etc. These studies integrate cytology, physiology, ecology, genetics and molecular biology, evolution, taxonomy and systematics with a focus on microorganisms; in particular bacteria. The relevance and applications of these microorganisms to the surrounding environment including human life and Mother Nature becomes part of this branch. Since inception of this branch of science, Microbiology has remained a field of actively research and ever expanding in all possible directions; broadly categorized as pure and applied science. Different branches of Pure Microbiology based on taxonomy are Bacteriology, Mycology, Protozoology and Parasitology, Phycology and Virology; with considerable overlap between these specific branches over each other and also with other disciplines of life sciences, like Biochemistry, Botany, Zoology, Cell Biology, Biotechnology, Nanotechnology, Bioinformatics, etc. Areas in the applied Microbial Sciences can be identified as: Medical, Pharmaceutical, Industrial (Fermentation, Pollution Control), Air, Water, Food and Dairy, Agriculture (Plant Pathology and Soil Microbiology), Veterinary, Environmental (Ecology, Geomicrobiology); and the technological aspects of these areas.

Department of Microbiology offers B.Sc. Microbiology and M.Sc. Microbiology

Program	Program Objectives	Program Specific Objectives
M.Sc. POI	PO1: Critical Thinking: Take	Current thrust area and prospective in
Microbiology	informed actions after identifying the	Microbiology are
	assumptions that frame our thinking	Microbial taxonomy and diversity
	and actions, checking out the degree to	Human health, agriculture, Microbial
	which these assumptions are accurate	technology,
	and valid, and looking at our ideas and	Eukaryotic cellular organization,
	decisions (intellectual, organizational,	Eukaryotic gene expression e.g. yeast
	and personal) from different	genetics, Determinants of microbial

Programme specific outcomes M.Sc. Microbiology are as follows

perspectiv	es.		pathogenicity,
			Immunopathology,
PO2:	Environment	and	immunopharmacology and cancer
Sustaina	bility : Understand the	e issues	biology, Over-expression of Protein
of envi	ronmental contexts	and	stability, conformation and folding,
sustainabl	e development.		recombinant proteins
			Biocontrol, Bioinformatics,
PO3: Pr	oblem Solving App	oroach:	Molecular tools for characterization,
Develop	the ability to no	t only	identification of bacteria, Possible
recognize	problems but also	o seek	utilization of microbial population
solutions f	for them.		from extreme environments
PO4: Re	search Aptitude:		Objectives to be achieved:
students s	hould be well acquaint	ed with	• To enrich students' knowledge and
research n	nethodology which		train them in the pure microbial
includes d	lifferent skill developm	nents in	sciences
scientific	writing, data handlin	ng and	• To introduce the concepts of
processing	, development of 1	research	application and research in
ideas and	d planning / design	ning of	Microbiology
research	projects. The skill se	ts thus	• To inculcate sense of scientific
evolved	will help the stude	ents in	responsibilities and social and
academic	and applied research.		environment awareness
			• To help students build-up a
			progressive and successful career

Course outcomes in M.Sc.

S No	Course	Learning outcomes
1	M.Sc. I	LO 1: Students will be able to describe classification scheme of
		microorganisms.
		LO2: They will be able to explain various methods of bacterial
		systematics like biochemical, molecular and bioinformatics.
		LO 3: Students will be able to apply statistical tools like central
		tendency, dispersion, correlation, regression and able to set up
		hypothesis for experiments and research.
		LO 4: Students will be able to use mathematical models to explain
		the laws of living system.
		LO 5: Students will be able to analyse the role of various
		biomolecules in living system, interaction of biomolecules in various
		processes.
		LO 6: Students are able to explain principles of various
		instruments used to understand living system.
		LO 7: They will be able to explain nature, structure, classification,
		detection methods and life cycle of viruses.
2	M.Sc. II	LO 1: Students will able to analyse antigen antibody interactions
		and able to demonstrate various in vivo in vitro techniques of
		immunology.
		LO 2: They will be able to understand techniques of gene
		manipulation and able to design experiments based on it.
		LO 3: They will be able to explain various waste water treatment
		processes and analyze their role in environmental cleanup.
		LO 4: They will be able to hypothesize a problem and will be able
		to design experiment to test the hypothesis.
		LO 5: They will be able to carry out a mini project.